These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: L-aspartate as an amino acid neurotransmitter: mechanisms of the depolarization-induced release from cerebrocortical synaptosomes. Author: Cavallero A, Marte A, Fedele E. Journal: J Neurochem; 2009 Aug; 110(3):924-34. PubMed ID: 19549007. Abstract: The role of L-aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well known excitatory neurotransmitter L-glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of L-aspartate, but not those of L-glutamate, became sensitive to DL-threo-b-benzyloxy aspartic acid (DL-TBOA), an excitatory amino acid transporter inhibitor. In the presence of DL-TBOA, the 50 mM KCl-evoked release of L-aspartate was still largely external Ca2+-dependent. The DL-TBOA insensitive,external Ca2+-independent component of the 50 mM KCl-evoked overflows of L-aspartate and L-glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of L-aspartate and L-glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced L-aspartate and L-glutamate release was completely external Ca2+-dependent and never affected by DL-TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H]D aspartate and [3H]L-glutamate. Therefore, our data showing that L-aspartate is released from nerve terminals by calcium dependent,exocytotic mechanisms support the neurotransmitter role of this amino acid.[Abstract] [Full Text] [Related] [New Search]