These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Response linearity of alert monkey non-eye movement vestibular nucleus neurons during sinusoidal yaw rotation. Author: Newlands SD, Lin N, Wei M. Journal: J Neurophysiol; 2009 Sep; 102(3):1388-97. PubMed ID: 19553479. Abstract: Vestibular afferents display linear responses over a range of amplitudes and frequencies, but comparable data for central vestibular neurons are lacking. To examine the effect of stimulus frequency and magnitude on the response sensitivity and linearity of non-eye movement central vestibular neurons, we recorded from the vestibular nuclei in awake rhesus macaques during sinusoidal yaw rotation at frequencies between 0.1 and 2 Hz and between 7.5 and 210 degrees/s peak velocity. The dynamics of the neurons' responses across frequencies, while holding peak velocity constant, was consistent with previous studies. However, as the peak velocity was varied, while holding the frequency constant, neurons demonstrated lower sensitivities with increasing peak velocity, even at the lowest peak velocities tested. With increasing peak velocity, the proportion of neurons that silenced during a portion of the response increased. However, the decrease in sensitivity of these neurons with higher peak velocities of rotation was not due to increased silencing during the inhibitory portion of the cycle. Rather the neurons displayed peak firing rates that did not increase in proportion to head velocity as the peak velocity of rotation increased. These data suggest that, unlike vestibular afferents, the central vestibular neurons without eye movement sensitivity examined in this study do not follow linear systems principles even at low velocities.[Abstract] [Full Text] [Related] [New Search]