These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets.
    Author: Savitha B, Joseph B, Peeyush Kumar T, Paulose CS.
    Journal: Biogerontology; 2010 Apr; 11(2):151-66. PubMed ID: 19554469.
    Abstract:
    We investigated acetylcholine esterase (AChE) activity, acetylcholine and muscarinic M1, M3 receptors kinetics in the cerebral cortex of young and old streptozotocin induced and insulin treated diabetic rats. The role of muscarinic receptors in intracellular calcium release from pancreatic islets was studied in vitro. Wistar rats of 7 and 90-weeks old were used. All studies were done in cerebral cortex. AChE assay was done by spectrophotometric method. Radioreceptor binding assays were done for Acetylcholine, Muscarinic M1 and M3 receptors using specific ligands. Calcium imaging was done using fluo4-AM in pancreatic cells. Ninety-weeks old control rats showed significantly decreased Vmax and increased Km for AChE compared to 7-weeks old control rats. An increased Vmax observed in both 7 and 90-weeks old diabetic groups with significant decrease in Km. Scatchard analysis using specific agonists showed significant decrease in the B (max) and K (d) of acetylcholine and muscarinic M1 receptors in 90-weeks old control rats compared to 7-weeks old control. Binding studies for M3 receptors showed no significant change compared to 7-weeks old control. Acetylcholine, muscarinic M1 and M3 receptor number significantly increased in 90-weeks old diabetic rat groups compared to their respective controls. Insulin treatment significantly reversed the binding parameters to near control compared to diabetic group. In vitro studies showed that acetylcholine through muscarinic M1 and M3 receptors' stimulated calcium release from the pancreatic islets. Thus our studies suggest that Insulin signaling play an important part in differentially regulating pancreatic cholinergic activity, and the diabetes mediated cortical dysfunctions with age.
    [Abstract] [Full Text] [Related] [New Search]