These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature-dependent changes of chloride transport kinetics in human red cells. Author: Brahm J. Journal: J Gen Physiol; 1977 Sep; 70(3):283-306. PubMed ID: 19556. Abstract: Chloride self-exchange in human red cells was studied between 0 degrees C and 38 degrees C. At higher temperatures the flow-tube method was used. Although the general features of chloride transport at 0 degrees C and 38 degrees C are similar, the following differences were found: (a) the maximum pH of chloride self-exchange flux was lowered 0.6 pH unit from 7.8 to 7.2 when temperature was increased from 0 degrees C to 38 degrees C; (b)the apparent half-saturation constant increased from 28 mM at 0 degrees C to 65 mM at 38 degrees C; (c) chloride transport at body temperature is slower than predicted by other investigators by extrapolation from low-temperature results. Chloride transport increased only 200 times when temperature was raised from 0 degrees C to 38 degrees C, because the apparent activation energy decreased from 30 kcal mol(-1) to 20 kcal mol(-1) above a temperature of 15 degrees C; (d) a study of temperature dependence of the slower bromide self-exchange showed that a similar change of activation energy occurred around 25 degrees C. Both in the case of Cl(-) (15 degrees C) and in the case of Br(-) (25 degrees C), critical temperature was reached when the anion self-exchange had a turnover number of about 4x10(9) ions cell (-1)s(-1); (e) inhibition of chloride transport by DIDS (4,4'- diisothiocyano-stilbene-2,2'-disulfonate)revealed that the deflection persisted at 15 degrees C at partial inhibition (66 percent) presumably because DIDS inactivated 66 percent of the transport sites. It is suggested that a less temperature- dependent step of anion exchange becomes rate limiting at the temperature where a critical turnover number is reached.[Abstract] [Full Text] [Related] [New Search]