These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Leaving the midline: how Robo receptors regulate the guidance of post-crossing spinal commissural axons.
    Author: Reeber SL, Kaprielian Z.
    Journal: Cell Adh Migr; 2009; 3(3):300-4. PubMed ID: 19556886.
    Abstract:
    In the developing nervous system, pathfinding axons navigate through a series of intermediate targets in order to form synaptic connections. Vertebrate spinal commissural axons extend toward and across the floor plate (FP), a key intermediate target located at the ventral midline (VM). Subsequently, post-crossing commissural axons grow either alongside or significant distances away from the floor plate (FP), but never re-cross the VM. Consistent with this behavior, post-crossing commissural axons lose responsiveness to the FP-associated chemoattractants, Netrin-1 and SHH, and gain responsiveness to Slits, which are potent midline repellents, in vitro. In addition, the results of several in vivo studies suggest that the upregulation of Slit-binding repulsive Robo receptors, Robo1/2, alters the responsiveness of decussated commissural axons to midline guidance cues. Nevertheless, in vertebrates, it is unclear whether Robo1/2 are the sole or major repellent receptors responsible for driving these commissural axons away from the VM and preventing their re-entry into the FP. We recently re-visited these issues in the chick spinal cord by assessing the consequences of manipulating Robo expression on commissural axons in ovo. Our findings suggest that, at least in chick embryos, the upregulation of repulsive Robos on post-crossing axons alters the responsiveness of these axons to midline repellents and facilitates their expulsion from, but is not likely to have a significant role in preventing their re-entry into the VM.
    [Abstract] [Full Text] [Related] [New Search]