These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of dl-praeruptorin A on cultured neonatal rat ventricular cardiomyocytes with hypertrophy induced by endothelin-1.
    Author: Tu X, Miao L, Kang Y, Xia H, Tu JW, Wang Q, Tu Q, Wang JM, Hao H.
    Journal: Methods Find Exp Clin Pharmacol; 2009 May; 31(4):231-6. PubMed ID: 19557200.
    Abstract:
    The present study investigated whether dl-praeruptorin (Pd-Ia) prevents endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy and the potential pathways that underlie such an effect. We assessed cardiomyocyte surface area, protein synthesis, the expression of Bax/Bcl2 and Jun genes, the expression of atrial natriuretic factor (ANF) and Ca2+/calmodulin-dependent kinase II (CaMK-II) activity in cultured neonatal rat ventricular cardiomyocytes with ET-1-induced hypertrophy. It was found that Pd-Ia decreased the surface area and protein synthesis rate in cardiomyocytes exposed to ET-1. Additionally, the expression of Bcl2 and Bax was increased in both the ET-1-exposed and Pd-Ia+ET- 1-treated groups compared with the control group, although this was not significant. In cardiomyocytes incubated with ET-1, the expression of ANF (Nppa) significantly increased relative to the control and Pd-Ia groups. The expression of Jun significantly increased in cardiomyocytes incubated with ET-1, but not in the Pd-Ia group, where Jun levels were similar to those found for the control group. Moreover, it was found that Pd-Ia inhibited the ET-1-induced increase in intracellular Ca(2+) concentration. The results showed that Pd-Ia could conceivably be an effective therapeutic drug for treating the contractile defects associated with cardiac hypertrophy and failure. This activity may be associated with its Ca2+-antagonist effect and modulation of the expression of immediate-early genes that play important roles in the mitogen-activated protein (MAP) kinase pathway.
    [Abstract] [Full Text] [Related] [New Search]