These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase.
    Author: Halliwell B.
    Journal: Biochem J; 1977 Jun 01; 163(3):441-8. PubMed ID: 195574.
    Abstract:
    1. Dihydroxyfumarate slowly autoxidizes at pH6. This reaction is inhibited by superoxide dismutase but not by EDTA. Mn2+ catalyses dihydroxyfumarate oxidation by reacting with O2 leads to to form Mn3+, which seems to oxidize dihydrofumarate rapidly. Cu2+ also catalyses dihydroxyfumarate oxidation, but by a mechanism that does not involve O2 leads to. 2. Peroxidase catalyses oxidation of dihydroxyfumarate at pH6; addition of H2O2 does not increase the rate. Experiments with superoxide dismutase and catalase suggest that there are two types of oxidation taking place: an enzymic, H2O2-dependent oxidation of dihydroxyfumarate by peroxidase, and a non-enzymic reaction involving oxidation of dihydroxyfumarate by O2 leads to. The latter accounts for most of the observed oxidation of dihydroxyfumarate. 3. During dihydroxyfumarate oxidation, most peroxidase is present as compound III, and the enzymic oxidation may be limited by the low rate of breakdown of this compound. 4. Addition of p-coumaric acid to the peroxidase/dihydroxyfumarate system increases the rate of dihydroxyfumarate oxidation, which is now stimulated by addition of H2O2, and is more sensitive to inhibition by catalase but less sensitive to superoxide dismutase. Compound III is decomposed in the presence of p-coumaric acid. p-Hydroxybenzoate has similar, but much smaller, effects on dihydroxyfumarate oxidation. However, salicylate affects neither the rate nor the mechanism of dihydroxyfumarate oxidation. 5. p-Hydroxybenzoate, salicylate and p-coumarate are hydroxylated by the peroxidase/dihydroxyfumarate system. Experiments using scavengers of hydroxyl radicals shown that OH is required. Ability to increase dihydroxyfumarate oxidation is not necessary for hydroxylation to occur.
    [Abstract] [Full Text] [Related] [New Search]