These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Author: Xu Y, Takai M, Ishihara K. Journal: Biomaterials; 2009 Oct; 30(28):4930-8. PubMed ID: 19560198. Abstract: Protein adsorption and cell adhesion on cationic, neutral, and anionic water-soluble 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer surfaces were compared. These model MPC copolymers coated SiO(2) surfaces exhibited comparable surface zeta-potentials of 26.1 mV, near 0 mV, and -24.2 mV, respectively. X-ray photoelectron spectroscopy analyses indicated the similarities and the differences in the surface composition between the sample surfaces. Atomic force microscopy analyses revealed that the type of the charged moiety did not affect the surface roughness. Static contact angle measurements and dynamic contact angle analyses not only indicated that the surfaces were very hydrophilic in general, but also provided information on the surface mobility and the dominant role of MPC at the surface in aqueous conditions. Comparing with the SiO(2) substrates on which protein seriously adsorbed and cell heavily adhered, three MPC copolymers coated surfaces, despite their different charge properties, exhibited significantly low adsorbed amounts of different proteins having various electrical natures and totally no cell adhesion. This suggested that the incorporation of charged moieties in the MPC copolymers did not significantly inspire both the protein adsorption and cell adhesion. The MPC moieties were predominant at the surface when in contact with aqueous conditions and thereby dominated the bio-adsorptions, while the possible effect from electrostatic interactions would be too small and too limited to influence the overall situation. Therefore, these MPC copolymer surfaces can satisfy those biological applications requiring not only electrical but also non-biofouling properties.[Abstract] [Full Text] [Related] [New Search]