These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells.
    Author: Altenburg JD, Siddiqui RA.
    Journal: Mol Cancer Res; 2009 Jul; 7(7):1013-20. PubMed ID: 19567784.
    Abstract:
    Metastasis is the leading cause of death from breast cancer. A major factor of metastasis is the migration of cancerous cells to other tissues by way of up-regulated chemokine receptors, such as CXCR4, on the cell surface. Much is known of the beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on cancer; however, the mechanisms behind these effects are unclear. For this study, we investigated the effects of two n-3 PUFAs, docosahexaenoic acid and eicosapentaenoic acid, on CXCR4 expression and activity in the MDA-MB-231 breast cancer cell line. We compared the n-3 PUFAs with the saturated fatty acid stearic acid as a control. Treatment of the cells with n-3 PUFAs resulted in reduced surface expression of CXCR4, but had no effect on overall CXCR4 expression. Consequently, we found that the fatty acid treatment significantly reduced CXCR4-mediated cell migration. Successful CXCR4-mediated signaling and migration requires the cholesterol-rich membrane microdomains known as lipid rafts. Treatment with n-3 PUFAs disrupted the lipid raft domains in a manner similar to methyl-beta-cyclodextrin and resulted in a partial displacement of CXCR4, suggesting a possible mechanism behind the reduced CXCR4 activity. These results were not observed in cells treated with stearic acid. Together, our data suggest that n-3 PUFAs may have a preventative effect on breast cancer metastasis in vitro. This suggests a previously unreported potential benefit of n-3 PUFAs to patients with metastatic breast cancer. The data presented in this study may also translate to other disorders that involve up-regulated chemokine receptors.
    [Abstract] [Full Text] [Related] [New Search]