These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformational and vibrational analysis of methyl methanesulfonate, CH3SO2OCH3.
    Author: Tuttolomondo ME, Navarro A, Peña T, Varetti EL, Parker SF, Ben Altabef A.
    Journal: J Phys Chem A; 2009 Jul 23; 113(29):8401-8. PubMed ID: 19569677.
    Abstract:
    The molecular structure of methyl methanesulfonate, CH(3)SO(2)OCH(3), has been optimized by using methods based on density functional theory, coupled cluster, and Moller-Plesset second order perturbation theory (MP2). With regard to CH(3)SO(2)OCH(3), two populated conformations with symmetries C(s) and C(1) are obtained, the former being more stable than the latter. The theoretical data indicate that although both anti and gauche conformers are possible by rotation about the S-O bond, the preferred conformation is anti. The total energy as a function of the CSOC dihedral angle has been calculated using the MP2 method with the 6-31G(d) and cc-pVDZ basis sets and the hybrid functional B3LYP using 6-31G(d), 6-311G(d,p), and 6-311++G(d,p) basis sets. A natural bond orbital analysis showed that the lone pair --> sigma* hyperconjugative interactions favor the anti conformation. Furthermore, the infrared spectra for the liquid and solid phases, the Raman spectrum for the liquid one, and the inelastic neutron scattering spectrum of the solid phase have been recorded, and the observed bands have been assigned to the vibrational modes. The experimental vibrational data, along with calculated theoretical force constants, were used to define a scaled quantum mechanical force field for the target system that enabled us to fit the measured frequencies with a final root-mean-square deviation of 10 cm(-1).
    [Abstract] [Full Text] [Related] [New Search]