These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinctive effects of the Epstein-Barr virus family of repeats on viral latent gene promoter activity and B-lymphocyte transformation. Author: Ali AK, Saito S, Shibata S, Takada K, Kanda T. Journal: J Virol; 2009 Sep; 83(18):9163-74. PubMed ID: 19570868. Abstract: The Epstein-Barr virus (EBV), a human B-lymphotropic gamma herpesvirus, contains multiple repetitive sequences within its genome. A group of repetitive sequences, known as the family of repeats (FR), contains multiple binding sites for the viral trans-acting protein EBNA-1. The FR sequences are important for viral genome maintenance and for the regulation of the promoter involved in viral latent gene expression. It has been reported that a palindromic sequence with a putative secondary structure exists at the 3' end of the FR in the genome of the EBV B95-8 strain and that this palindromic sequence has been deleted from the FR of the commonly used EBV miniplasmids. For the first time, we cloned an EBV B95-8 DNA fragment containing the full-length FR, which enabled us to examine the functional difference between full-length and deleted FRs. The full-length FR, like the deleted FR, functioned as a transcriptional enhancer of the viral latent gene promoter, but that transactivation was significantly attenuated in the case of the full-length FR. No significant enhancement of replication was observed when the deleted FR was replaced with the full-length FR in an EBV miniplasmid. By contrast, when the same set of FR sequences were tested in the context of the complete EBV genome, the full-length FR resulted in more-efficient B-cell transformation than the deleted FR. We propose that the presence of the full-length FR contributes to the precise regulation of the viral latent promoter and increases the efficiency of B-cell transformation.[Abstract] [Full Text] [Related] [New Search]