These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS.
    Author: Vendl O, Berthiller F, Crews C, Krska R.
    Journal: Anal Bioanal Chem; 2009 Nov; 395(5):1347-54. PubMed ID: 19572123.
    Abstract:
    Cereals and cereal-based food have often been found to be contaminated with the mycotoxins deoxynivalenol (DON) and zearalenone (ZON), after infection of the grain with the pathogenic fungus Fusarium. Both the pathogen and the infected plants can chemically modify DON and ZON, including acetylation, glucosidation, and sulfation. Analytical strategies for detection and quantification of DON and ZON are well known and established but often fail to recognize the respective metabolites, which are, therefore, also referred to as "masked" mycotoxins. However, several masked forms are also known to be harmful to mammals. Failure to detect these could lead to significant underestimation of the toxic potential of a particular sample. To monitor the levels of DON and ZON metabolites in cereals and cereal-based food, we have developed a LC-MS-MS method capable of simultaneous determination of DON, ZON, and eight of their masked metabolites, namely deoxynivalenol-3-glucoside (D3G), 3-acetyl-deoxynivalenol (3ADON), zearalenone-4-glucoside (Z4G), alpha-zearalenol (alpha-ZOL), beta-zearalenol (beta-ZOL), alpha-zearalenol-4-glucoside (alpha-ZG), beta-zearalenol-4-glucoside (beta-ZG), and zearalenone-4-sulfate (Z4S). The suitability of several cleanup strategies including C(18)-SPE, primary and secondary amines (PSA), MycoSep push-through columns, and immunoaffinity columns was evaluated. The final method used no sample cleanup and was successfully validated for four cereal-based food matrices, namely cornflour, porridge, beer, and pasta, showing good recoveries and precision for all analytes.
    [Abstract] [Full Text] [Related] [New Search]