These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identifying the origins of two secondary relaxations in polysaccharides. Author: Kaminski K, Kaminska E, Ngai KL, Paluch M, Wlodarczyk P, Kasprzycka A, Szeja W. Journal: J Phys Chem B; 2009 Jul 30; 113(30):10088-96. PubMed ID: 19572673. Abstract: The main goal of this paper is to identify the molecular origins of two secondary relaxations observed in mechanical as well as in dielectric spectra in polysaccharides, including cellulose, and starches, such as pullulan and dextran. This issue has been actively pursued by many research groups, but consensus has not been reached. By comparing experimental data of monosaccharides, disaccharides, and polysaccharides, we are able to make conclusions on the origins of two secondary relaxations in polysaccharides. The faster secondary relaxations of polysaccharides are similar to the faster secondary relaxations of mono-, di-, and oligosaccharides. These include comparable relaxation times and activation energies in the glassy states, and also all the faster secondary relaxations have larger dielectric strengths than the slower secondary relaxation. The similarities indicate that the faster secondary relaxations in the polysaccharides have the same origin as that in mono-, di-, and oligosaccharides. Furthermore, since the relaxation time of the faster secondary relaxation in several mono- and disaccharides was found to be insensitive to applied pressure, the faster secondary relaxations of the polysaccharides are identified as internal motions within their monomeric units. The slower secondary relaxations in polysaccharides also have similar characteristics to those of the slower secondary relaxations of the disaccharides (maltose, cellobiose, sucrose, and trehalose), which indicates the analogous motions govern the slower process in these two groups of carbohydrates. Earlier we have shown in disaccharides that the rotation of the monomeric units around the glycosidic bond is responsible for this process. The same motion can occur in polysaccharides in the form of a local chain rotation. These motions involve the whole molecule in disaccharides and a local segment in polysaccharides. It is intermolecular in nature (with relaxation time pressure dependent, as found before in a disaccharide), and hence, it is the precursor of the structural alpha-relaxation. These results lead us to identify the slower secondary relaxation of the polysaccharides as the Johari-Goldstein beta-relaxation, which is supposedly a universal and fundamental process in all glass-forming substances.[Abstract] [Full Text] [Related] [New Search]