These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Personal PM10 exposure in asthmatic adults in Padova, Italy: seasonal variability and factors affecting individual concentrations of particulate matter.
    Author: Scapellato ML, Canova C, de Simone A, Carrieri M, Maestrelli P, Simonato L, Bartolucci GB.
    Journal: Int J Hyg Environ Health; 2009 Nov; 212(6):626-36. PubMed ID: 19574093.
    Abstract:
    Personal exposure to PM(10) measured in different seasons in a sample of asthmatic subjects living in Padova (Northern Italy) was compared with simultaneously measured outdoor PM(10) concentrations. The specific contribution of ambient PM(10) and other factors to individual exposure was evaluated in one of the areas of Europe with the worst air pollution. Thirty-one asthmatic subjects (21 non-smokers and 10 smokers) carried personal PM(10) monitors for six 24-hr sessions, in different seasons of the year. Concomitant daily 24-hr ambient PM(10) concentrations were measured by air quality monitoring networks. A multivariate analysis was performed to identify factors explaining personal exposure to PM(10), using a random effect model. The analysis on the 31 subjects referred to a total of 155 observations. The mean personal PM(10) exposure was higher (range 79.3-126.1microg/m(3)) than the outdoor concentrations (range 37.3-85.4microg/m(3)) in all seasons; and personal exposures varied less than outdoor PM(10) levels from one season to another. Smokers had significantly higher personal PM(10) concentrations than non-smokers (127.99 vs 78.8microg/m(3); T=-5.70; p<0.001). Moderate correlations emerged between outdoor and personal PM(10) concentrations. The correlation improved after excluding subjects exposed to active or passive smoking (median Pearson's R 0.41 vs 0.26). Considering all the subjects, smoking was the main factor affecting personal exposure, contributing to 41% of the variability. Outdoor PM(10) concentrations (25%), temperature (12%) and season (15%) also contributed to personal PM(10) exposure. Outdoor PM(10) (46%), temperature (20%), season (19%) and time spent indoors (6%) were significantly associated with personal exposure in non-smokers. We concluded that it is crucial to perform personal monitoring and to evaluate the complexity of factors that contribute to individual PM exposure. While tobacco smoke was the primary source of PM(10) in all subjects, the contribution of ambient components was particularly relevant for the personal exposure levels of our non-smokers living in a highly-polluted environment.
    [Abstract] [Full Text] [Related] [New Search]