These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electroosmotic pump-assisted capillary electrophoresis of proteins.
    Author: Xu L, Dong XY, Sun Y.
    Journal: J Chromatogr A; 2009 Aug 07; 1216(32):6071-6. PubMed ID: 19576588.
    Abstract:
    A new method for protein analysis, that is, electroosmotic pump-assisted capillary electrophoresis (EOPACE), is developed and demonstrated to possess several advantages over other CE-based techniques. The column employed in EOPACE consists of two linked sections, poly(vinyl alcohol) (PVA)-coated and uncoated capillaries. The PVA-coated capillary column is the section for protein electrophoresis in EOPACE. Electroosmotic flow (EOF) is almost completely suppressed in this hydrophilic polymer coated section, so protein electrophoresis in the PVA-modified capillary is free of irreversible protein adsorption to the capillary inner wall. The uncoated capillary section serves as an electroosmotic pump, since EOF towards cathode occurs at neutral pH in the naked silica capillary. By the separation of a protein mixture containing cytochrome c (Cyt-c), myoglobin and trypsin inhibitor, we have demonstrated the advantages of EOPACE method over other relevant ones such as pressure assisted CE, capillary zone electrophoresis (CZE) with naked capillary and CZE with PVA-coated capillary. A significant feature of EOPACE is that simultaneous separation of cationic, anionic and uncharged proteins at neutral pH can be readily accomplished by a single run, which is impossible or difficult to realize by the other CE-based methods. The high column efficiency and good reproducibility in protein analysis by EOPACE are verified and discussed. In addition, separation of tryptic digests of Cyt-c with the EOPACE system is demonstrated.
    [Abstract] [Full Text] [Related] [New Search]