These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of elastic strains on the adsorption process in porous materials: an experimental approach.
    Author: Grosman A, Ortega C.
    Journal: Langmuir; 2009 Jul 21; 25(14):8083-93. PubMed ID: 19594184.
    Abstract:
    The experimental results presented in this paper show the influence of the elastic deformation of porous solids on the adsorption process. With p(+)-type porous silicon formed on highly boron doped (100) Si single crystal, we can make identical porous layers, either supported by or detached from the substrate. The pores are perpendicular to the substrate. The adsorption isotherms corresponding to these two layers are distinct. In the region preceding capillary condensation, the adsorbed amount is lower for the membrane than for the supported layer and the hysteresis loop is observed at higher pressure. We attribute this phenomenon to different elastic strains undergone by the two layers during the adsorption process. For the supported layer, the planes perpendicular to the substrate are constrained to have the same interatomic spacing as that of the substrate so that the elastic deformation is unilateral, at an atomic scale, and along the pore axis. When the substrate is removed, tridimensional deformations occur and the porous system can find a new configuration for the solid atoms which decreases the free energy of the system adsorbate-solid. This results in a decrease of the adsorbed amount and in an increase of the condensation pressure. The isotherms for the supported porous layers shift toward that of the membrane when the layer thickness is increased from 30 to 100 mum. This is due to the relaxation of the stress exerted by the substrate as a result of the breaking of Si-Si bonds at the interface between the substrate and the porous layer. The membrane is the relaxed state of the supported layer.
    [Abstract] [Full Text] [Related] [New Search]