These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics of nucleolar fusion in neuronal interphase nuclei in vitro: association with nuclear rotation. Author: Park PC, De Boni U. Journal: Exp Cell Res; 1991 Dec; 197(2):213-21. PubMed ID: 1959557. Abstract: Nuclear rotation (NR) refers to the motion of chromatin domains in interphase nuclei of several cell types, including neurons, in vitro. It has been proposed that NR may function, during cellular differentiation, in the transposition of specific chromatin domains into the cytotypic chromosome pattern known to exist in interphase nuclei. It is controversial whether NR represents motion of nuclei in toto, including the nuclear envelope, or whether NR represents independent motion of subnuclear structures, relative to each other. Using nucleoli as markers of chromatin motion in dorsal root ganglion neurons in vitro, we now show that trajectories of individual nucleoli are spatially restricted to subnuclear domains. Nucleoli move at mean rates of 2.153 +/- 0.037 deg/min and exhibit periodic fluctuations in rate. Fast Fourier transform analyses show dominant frequencies ranging from 0.47 c/h to 2.91 c/h. The power spectra of periodic motion of 15 of 25 nucleoli monitored exhibit resonance which suggests that NR represents forced harmonic motion. Quantification of motion of nucleoli in differentiating, multinucleolate neurons showed that internucleolar distances may rapidly decrease, culminating in nucleolar fusion, and showed that nucleolar fusion was invariably associated with a transient increase in the rate of NR. These results indicate that nucleoli may move independently; that an association exists between rearrangement of chromatin domains and NR; and that NR, nucleolar fusion, and differentiation are linked.[Abstract] [Full Text] [Related] [New Search]