These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osmoregulatory responses of expression of vasotocin, isotocin, prolactin and growth hormone genes following hypoosmotic challenge in a stenohaline marine teleost, tiger puffer (Takifugu rubripes).
    Author: Motohashi E, Hasegawa S, Mishiro K, Ando H.
    Journal: Comp Biochem Physiol A Mol Integr Physiol; 2009 Nov; 154(3):353-9. PubMed ID: 19596077.
    Abstract:
    To examine possible roles of vasotocin (VT), isotocin (IT), prolactin (PRL) and growth hormone (GH) in osmoregulation of a stenohaline marine teleost, tiger puffer (Takifugu rubripes), changes in expression levels of these genes following hypoosmotic challenge, were examined in two experiments. Fish were transferred from 100% seawater (SW) to 33% SW, 10% SW and fresh water (FW), and left for 3days in experiment I. In experiment II, fish were transferred to FW, and left for 1day. Changes in plasma osmolality, concentrations of Na(+) and Cl(-), and Na(+)/K(+)-ATPase activity in the gills and kidney were examined. Changes in the absolute amounts of VT, IT, PRL and GH mRNAs were determined by real-time PCR. In experiment I, almost all fish survived over 3days of acclimation. The plasma parameters decreased on day 1, and remained at similar levels until day 3. The renal Na(+)/K(+)-ATPase activity significantly increased in 10% SW and FW on day 1. The amounts of VT and IT mRNAs tended to decrease in the hypoosmotic conditions on day 1. The amounts of PRL mRNA significantly increased in the hypoosmotic conditions, whereas those of GH mRNA decreased in FW. In experiment II, the amount of VT mRNA significantly decreased in FW concomitantly with the changes in PRL and GH mRNAs. The present results suggest that the hyperosmotic responses may be regulated by neuroendocrine factors such as VT, PRL and GH in tiger puffer, as in case of euryhaline teleosts. Particularly, the present study first shows that the expression of VT gene may be down-regulated following hypoosmotic challenge in the stenohaline marine fish.
    [Abstract] [Full Text] [Related] [New Search]