These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Author: Guenette E, Barrett A, Kraus D, Brody R, Harding L, Magee G. Journal: Int J Pharm; 2009 Oct 01; 380(1-2):80-8. PubMed ID: 19596428. Abstract: Medicines for delivering therapeutic agents to the lung as dry powders primarily consist of a carrier and a micronised active pharmaceutical ingredient (API). The performance of an inhaled formulation will depend on a number of factors amongst which the particle size distribution (PSD) plays a key role. It is suggested that increasing the number of fine particles in the carrier can improve the aerosolisation of the API. In addition the effect of PSD upon a bulk powder is also broadly understood in terms of powder flow. Other aspects of functionality that different size fractions of the carrier affect are not clearly understood; for example, it is not yet clearly known how different size fractions contribute to the different functionalities of the carrier. It is the purpose of this investigation to examine the effects of different lactose size fractions on fine particle dose, formulation stability and the ability to process and fill the material in the preferred device. In order to understand the true impact of the size fractions of lactose on the performance of dry powder inhaled (DPI) products, a statistically designed study has been conducted. The study comprised various DPI blend formulations prepared using lactose monohydrate carrier systems consisting of mixtures of four size fractions. Interactive mixtures were prepared containing 1% (w/w) salbutamol sulphate. The experimental design enabled the evaluation of the effect of lactose size fractions on processing and performance attributes of the formulation. Furthermore, the results of the study demonstrate that an experimental design approach can be used successfully to support dry powder formulation development.[Abstract] [Full Text] [Related] [New Search]