These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum interactions. Author: Chen LS, Tang N, Jiang HX, Yang LT, Li Q, Smith BR. Journal: J Plant Physiol; 2009 Dec 15; 166(18):2023-34. PubMed ID: 19596484. Abstract: Seedlings of sour pummelo (Citrus grandis) were irrigated daily for 18 weeks with nutrient solution containing four phosphorus (P) levels (50, 100, 250 and 500 microM KH2PO4) and two aluminum (Al) levels [0 (-Al) and 1.2 mM AlCl3 x 6H2O (+Al)]. Both malate and citrate concentrations in +Al leaves decreased with increasing P supply, but their concentrations in -Al leaves did not change in response to P supply. The concentrations of malate under 50 microM P and of citrate under 50 and 100 microM P were higher in +Al leaves than in -Al ones, but malate concentration was lower in +Al leaves than in -Al ones under 500 microM P. There was no difference in root malate and citrate concentrations among different P and Al combinations except for an increase in malate and citrate under 50 microM P+0 mM Al and a slight decrease in malate under 50 microM P+1.2 mM Al. The activities of acid-metabolizing enzymes (citrate synthase, aconitase, phosphoenolpyruvate carboxylase, NADP-isocitrate dehydrogenase, phosphoenolpyruvate phosphatase, NAD-malate dehydrogenase, NADP-malic enzyme and pyruvate kinase) in most cases were less affected by P and Al interactions in roots compared to the leaves. Our results support the hypothesis that changes in organic acid metabolism differ between roots and leaves of C. grandis in response to P and Al interactions.[Abstract] [Full Text] [Related] [New Search]