These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dopamine cell loss in the periaqueductal gray in multiple system atrophy and Lewy body dementia. Author: Benarroch EE, Schmeichel AM, Dugger BN, Sandroni P, Parisi JE, Low PA. Journal: Neurology; 2009 Jul 14; 73(2):106-12. PubMed ID: 19597132. Abstract: BACKGROUND: Experimental studies indicate that dopaminergic neurons in the ventral periaqueductal gray matter (PAG) are involved in maintenance of wakefulness. Excessive daytime sleepiness (EDS) is a common manifestation of multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) but involvement of these neurons has not yet been explored. METHODS: We sought to determine whether there is loss of dopaminergic neurons in the ventral PAG in MSA and DLB. We studied the midbrain obtained at autopsy from 12 patients (9 male, 3 female, age 61 +/- 3) with neuropathologically confirmed MSA, 12 patients (11 male, 1 female, age 79 +/- 4) with diagnosis of DLB and limbic or neocortical Lewy body disease, and 12 controls (7 male, 5 female, ages 67 +/- 4). Fifty-micron sections were immunostained for tyrosine hydroxylase (TH) or alpha-synuclein and costained with thionin. Cell counts were performed every 400 mum throughout the ventral PAG using stereologic techniques. RESULTS: Compared to the total estimated cell numbers in controls (21,488 +/- 8,324 cells), there was marked loss of TH neurons in the ventral PAG in both MSA (11,727 +/- 5,984; p < 0.01) and DLB (5,163 +/- 1,926; p < 0.001) cases. Cell loss was more marked in DLB than in MSA. There were characteristic alpha-synuclein inclusions in the ventral PAG in both MSA and DLB. CONCLUSIONS: There is loss of putative wake-active ventral periaqueductal gray matter dopaminergic neurons in both multiple system atrophy and dementia with Lewy bodies, which may contribute to excessive daytime sleepiness in these conditions.[Abstract] [Full Text] [Related] [New Search]