These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate). Author: Brausam A, Eigler S, Jux N, van Eldik R. Journal: Inorg Chem; 2009 Aug 17; 48(16):7667-78. PubMed ID: 19601585. Abstract: A detailed study of the effect of pH, temperature, and pressure on the reaction of hydrogen peroxide with [Fe(III)(P(8-))](7-), where P(8-) represents the octa anionic porphyrin, was performed using stopped-flow techniques. Depending on the pH, different high valent iron-oxo species were formed. At pH < 9 formation of a two-electron oxidized species [(porphyrin(+*))Fe(IV)=O] was observed. In contrast, at pH > 9 only the one electron oxidized species [(porphyrin)Fe(IV)=O] was found to be present in solution. Under selected conditions at pH 8 it was possible to determine rate constants for both the coordination of hydrogen peroxide and subsequent heterolytic cleavage of the O-O bond. At pH 11 a composite rate constant for coordination of H(2)O(2) and homolytic cleavage of the O-O bond could be measured. In addition, it was possible to determine the activation parameters for the overall reaction sequence leading to the formation of [(porphyrin)Fe(IV)=O]. Careful analysis of the obtained data supports an associatively activated mechanism for the coordination of hydrogen peroxide. The catalytic properties of [Fe(III)(P(8-))](7-) in the presence of H(2)O(2) were also investigated. Both high valent iron-oxo species turned out to be able to oxidize diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to the radical cation ABTS(+*). At higher hydrogen peroxide concentrations a reduced yield of ABTS(+*) was observed because of increased catalase activity of [Fe(III)(P(8-))](7-). At high pH disproportionation of ABTS(+*) to ABTS and ABTS(2+) occurred, which could be suppressed by an excess of unreacted ABTS. In slightly basic to acidic solutions this reaction did not play a role.[Abstract] [Full Text] [Related] [New Search]