These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach.
    Author: Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C.
    Journal: Rapid Commun Mass Spectrom; 2009 Aug 30; 23(16):2439-47. PubMed ID: 19603470.
    Abstract:
    The microbial carbon and hydrogen isotope fractionation of benzene under sulfate-reducing conditions was investigated within systems of increasing complexity: (i) batch laboratory microcosms, (ii) a groundwater-percolated column system, and (iii) an aquifer transect. Recent molecular biological studies indicate that, at least in the laboratory microcosms and the column system, benzene is degraded by similar bacterial communities. Carbon and hydrogen enrichment factors (epsilon(C), epsilon(H)) obtained from laboratory microcosms and from the column study varied significantly although experiments were performed under similar redox and temperature conditions. Thus, enrichment factors for only a single element could not be used to distinguish benzene degradation under sulfate-reducing conditions from other redox conditions. In contrast, using correlation of changes of hydrogen vs. carbon isotope ratios (Lambda = Delta delta(2)H/Delta delta(13)C), similar Lambda-values were derived for the benzene biodegradation under sulfate-reducing conditions in all three experimental systems (Lambda(laboratory microcosms) = 23 +/- 5, Lambda(column) = 28 +/- 3, Lambda(aquifer) = 24 +/- 2), showing the robustness of the two-dimensional compound-specific stable isotope analysis (2D-CSIA) for elucidating distinct biodegradation pathways. Comparing carbon and hydrogen isotope fractionation data from recent studies, an overlap in Lambda-values was observed for benzene biodegradation under sulfate-reducing (Lambda = 23 +/- 5 to Lambda = 29 +/- 3) and methanogenic (Lambda = 28 +/- 1 to Lambda = 39 +/- 5) conditions, indicating a similar initial benzene reaction mechanism for both electron-acceptor conditions.
    [Abstract] [Full Text] [Related] [New Search]