These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cerebral oxygenation and metabolism during exercise following three months of endurance training in healthy overweight males.
    Author: Seifert T, Rasmussen P, Brassard P, Homann PH, Wissenberg M, Nordby P, Stallknecht B, Secher NH, Nielsen HB.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2009 Sep; 297(3):R867-76. PubMed ID: 19605762.
    Abstract:
    Endurance training improves muscular and cardiovascular fitness, but the effect on cerebral oxygenation and metabolism remains unknown. We hypothesized that 3 mo of endurance training would reduce cerebral carbohydrate uptake with maintained cerebral oxygenation during submaximal exercise. Healthy overweight males were included in a randomized, controlled study (training: n = 10; control: n = 7). Arterial and internal jugular venous catheterization was used to determine concentration differences for oxygen, glucose, and lactate across the brain and the oxygen-carbohydrate index [molar uptake of oxygen/(glucose + (1/2) lactate); OCI], changes in mitochondrial oxygen tension (DeltaP(Mito)O(2)) and the cerebral metabolic rate of oxygen (CMRO(2)) were calculated. For all subjects, resting OCI was higher at the 3-mo follow-up (6.3 +/- 1.3 compared with 4.7 +/- 0.9 at baseline, mean +/- SD; P < 0.05) and coincided with a lower plasma epinephrine concentration (P < 0.05). Cerebral adaptations to endurance training manifested when exercising at 70% of maximal oxygen uptake (approximately 211 W). Before training, both OCI (3.9 +/- 0.9) and DeltaP(Mito)O(2) (-22 mmHg) decreased (P < 0.05), whereas CMRO(2) increased by 79 +/- 53 micromol x 100 x g(-1) min(-1) (P < 0.05). At the 3-mo follow-up, OCI (4.9 +/- 1.0) and DeltaP(Mito)O(2) (-7 +/- 13 mmHg) did not decrease significantly from rest and when compared with values before training (P < 0.05), CMRO(2) did not increase. This study demonstrates that endurance training attenuates the cerebral metabolic response to submaximal exercise, as reflected in a lower carbohydrate uptake and maintained cerebral oxygenation.
    [Abstract] [Full Text] [Related] [New Search]