These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amoxicillin resistance with beta-lactamase production in Helicobacter pylori. Author: Tseng YS, Wu DC, Chang CY, Kuo CH, Yang YC, Jan CM, Su YC, Kuo FC, Chang LL. Journal: Eur J Clin Invest; 2009 Sep; 39(9):807-12. PubMed ID: 19614952. Abstract: BACKGROUND: Amoxicillin-resistant Helicobacter pylori with minimal inhibitory concentration (MIC) >or= 256 mg L(-1) was isolated from a gastritis patient. The aims were to investigate the mechanism of high-level amoxicillin resistance in H. pylori. MATERIALS AND METHODS: The beta-lactamase production was determined by means of nitrocefin sticks and the presence of gene encoding the beta-lactam antibiotic resistance enzyme TEM beta-lactamase was analysed by polymerase chain reaction (PCR), sequencing and dot-blot hybridization. Sequencing analysis of pbp1A gene was performed and amoxicillin-susceptible isolate was transformed with pbp1A PCR products from the resistant isolate. The expression of hefC efflux system was analysed using real-time quantitative PCR. RESULTS: Activity of beta-lactamase was detected. Sequence analysis showed that the PCR product derived from H. pylori 3778 was identical to the bla(TEM-1) (GenBank accession EU726527). Dot-blot hybridization confirmed the presence of beta-lactamase gene bla(TEM-1.) By transformation of PCR product of mutated pbp1A gene from H. pylori 3778 into amoxicillin-susceptible strain showed that substitutions in Thr(556)-->Ser, Lys(648)-->Gln, Arg(649)-->Lys and Arg(656)-->Pro contribute to low-level amoxicillin resistance. The MIC of amoxicillin for the transformants was 0.75 mg L(-1). Over-expression of hefC was not found. CONCLUSIONS: High-level amoxicillin resistance is associated with beta-lactamase production in H. pylori. Low-level amoxicillin resistance is linked to a point mutation on pbp1A. Because H. pylori can exchange DNA through natural transformation, spreading of bla(TEM-1) amoxicillin resistance gene among H. pylori is a potential threat when treating H. pylori infection.[Abstract] [Full Text] [Related] [New Search]