These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The deletion mutant EGFRvIII significantly contributes to stress resistance typical for the tumour microenvironment.
    Author: Theys J, Jutten B, Dubois L, Rouschop KM, Chiu RK, Li Y, Paesmans K, Lambin P, Lammering G, Wouters BG.
    Journal: Radiother Oncol; 2009 Sep; 92(3):399-404. PubMed ID: 19616331.
    Abstract:
    BACKGROUND AND PURPOSE: The epidermal growth factor receptor (EGFR) is overexpressed or mutated in many tumour types. The truncated, constitutively active EGFRvIII variant has not been detected in normal tissues but is found in many malignancies. In the current study, we have investigated the hypothesis that EGFRvIII contributes to a growth and survival advantage under tumour microenvironment-related stress conditions. MATERIALS AND METHODS: U373MG doxycycline-regulated isogenic cells expressing EGFRwt or EGFRvIII were created and validated using Western blot, FACS and qRT-PCR. In vitro proliferation was evaluated with standard growth assays. Cell survival was assayed using clonogenic survival. Animal experiments were performed using NMRI-nu-xenografted mice. RESULTS: Inducible isogenic cell lines were created and showed high induction of EGFRwt and EGFRvIII upon doxycycline addition. Overexpression of EGFRvIII but not of EGFRwt in this model resulted in a growth and survival advantage upon different tumour microenvironment-related stress conditions in vitro. Induction of EGFRvIII increased tumour growth in vivo, which was reversible upon loss of expression. CONCLUSIONS: Under conditions where nutrients are limited and stress is apparent, as in the tumour microenvironment, expression of EGFRvIII leads to a growth and survival advantage. These data indicate a potential selection of EGFRvIII-expressing tumour cells under such stress conditions.
    [Abstract] [Full Text] [Related] [New Search]