These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Response of small-scale, methyl rotors to protein-ligand association: a simulation analysis of calmodulin-peptide binding. Author: Krishnan M, Smith JC. Journal: J Am Chem Soc; 2009 Jul 29; 131(29):10083-91. PubMed ID: 19621963. Abstract: Changes in the free energy barrier (DeltaE), entropy, and motional parameters associated with the rotation of methyl groups in a protein (calmodulin (CaM)) on binding a ligand (the calmodulin-binding domain of smooth-muscle myosin (smMLCKp)) are investigated using molecular dynamics simulation. In both the bound and uncomplexed forms of CaM, the methyl rotational free energy barriers follow skewed-Gaussian distributions that are not altered significantly upon ligand binding. However, site-specific perturbations are found. Around 11% of the methyl groups in CaM exhibit changes in DeltaE greater than 0.7 kcal/mol on binding. The rotational entropies of the methyl groups exhibit a nonlinear dependence on DeltaE. The relations are examined between motional parameters (the methyl rotational NMR order parameter and the relaxation time) and DeltaE. Low-barrier methyl group rotational order parameters deviate from ideal tetrahedrality by up to approximately 20%. There is a correlation between rotational barrier changes and proximity to the protein-peptide binding interface. Methyl groups that exhibit large changes in DeltaE are found to report on elements in the protein undergoing structural change on binding.[Abstract] [Full Text] [Related] [New Search]