These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Author: Chen Z, Cheng S, Li Z, Xu K, Chen GQ.
    Journal: J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282.
    Abstract:
    Novel tailor-made poly(ester urethane)s (PUs) based on microbial polyesters poly(3-hydroxybutyrate-co-4hydroxybutyrate) (P3HB4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were synthesized by melting polymerization (MP) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. A comprehensive characterization using (1)H-NMR, Fourier transform infrared spectroscopy (FT-IR), gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), mechanical properties, static water contact angles, cell proliferation using smooth muscle cells from rabbit aorta (RaSMCs) and immortalized human keratinocytes (HaCat), and blood coagulation behavior were conducted on the synthesized PUs films. DSC showed that PU samples had a low degree of crystallinity at room temperature and became fully amorphous after a melt-quenched process. The series of tailor-made PUs based on different mass ratios of P3HB4HB and PHBHHx revealed a ductile and flexile mechanical property especially for PHBHHx-rich PU, or a hydrophobic property for 4HB-rich PU. A 4 days incubation experiment showed that all PU films had a better cell proliferation than poly(lactic acid) (PLA), polyhydroxybutyrate (PHB), P3HB4HB and PHBHHx. RaSMCs cultured on PU films had a quiescent contractile phenotype, indicating that they were fully functional. HaCat incubated on tailor-made PU films showed a proliferation approximately equal to tissue-culture plates (TCPs). Blood coagulation behavior tests revealed a strong platelet adhesion and a short coagulation time on PU films. This study demonstrated potential medical applications for P3HB4HB and PHBHHx based polyurethane as a hydrophobic wound-healing and hemostatic materials.
    [Abstract] [Full Text] [Related] [New Search]