These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ERp46 is reduced by high glucose and regulates insulin content in pancreatic beta-cells. Author: Alberti A, Karamessinis P, Peroulis M, Kypreou K, Kavvadas P, Pagakis S, Politis PK, Charonis A. Journal: Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E812-21. PubMed ID: 19622788. Abstract: Our studies focus on ERp46, an endoplasmic reticulum (ER) component, and analyze its involvement in glucose toxicity and in insulin production. Differences in pancreatic beta-TC-6 cell proteome under conditions of low vs. high glucose were examined by proteomic approaches, including two-dimensional gel electrophoresis, image analysis, and mass spectrometry. Among differentially expressed proteins, ERp46, a novel endoplasmic reticulum component, was examined further. The expression of ERp46 in pancreatic sections was analyzed by immunocytochemistry, and high glucose-induced alterations of expression were evaluated in cultured beta-cells, in isolated pancreatic islets, and in the pancreas of db/db diabetic animals. Inhibition of ERp46 expression by siRNA was performed to study its role in insulin production, in secretion, and in ER stress. Proteomic analysis led to identification of 46 differentially expressed spots corresponding to 23 proteins. Since ERp46 is a novel protein with a possible crucial role in secretory cells, we further analyzed its role in beta-cell function. ERp46 expression is reduced in high glucose concentration in beta-TC-6 cells and in isolated murine islets. Further analysis revealed high expression of ERp46 in pancreatic islets compared with exocrine tissue. Interestingly, a marked decrease in ERp46 expression was found in the pancreatic islets of db/db mice. Most importantly, siRNA-mediated knockdown of ERp46 in cultured beta-cells led to a significant decrease in the insulin content; however, no alterations in insulin mRNA levels were observed under these conditions. In addition, reduced expression of ERp46 by siRNA increased the expression of CHOP and peIF2a, indicating development of ER stress. We conclude that ERp46 may be an important component in the phenomenon of "glucose toxicity" involved in insulin production at the posttranslational level.[Abstract] [Full Text] [Related] [New Search]