These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in the fetal tibial growth plate secondary to maternal zinc deficiency in the rat: a histological and histochemical study. Author: da Cunha Ferreira RM, Rodriguez Gonzalez JI, Monreal Marquiegui I, Villa Elizaga I. Journal: Teratology; 1991 Oct; 44(4):441-51. PubMed ID: 1962289. Abstract: Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. To elucidate further the effects of maternal ZD in the fetal skeleton, we performed a morphological and histochemical study of tibial growth plate (GP) in ZD rat fetuses. The histochemical study included the identification of calcium, of hydrolytic enzymes associated with the process of calcification, and of oxidative enzymes related to energy production and to the synthesis of proteoglycans. Pregnant Sprague-Dawley rats were fed (1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), (2) a zinc-deficient diet (0 micrograms/g) ad libitum (group ZD), or (3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed, the fetuses were removed, and fetal tibiae obtained. Specimens were stained with hematoxylin-eosin (H&E) and Masson Trichrome and were processed for identification of alkaline phosphatase, adenosine triphosphatase, succinic dehydrogenase, NADH dehydrogenase, and calcium. The morphologic patterns found in ZD fetal tibiae indicated defects in various cell types implicated in bone metabolism. Staining for hydrolytic enzymes revealed alterations in the size and distribution of matrix vesicles and a weaker staining for ATPase in ZD fetuses. Staining for oxidative enzymes was overall more intense in ZD fetal tibiae. ZD fetuses also presented irregular and defective calcification. These findings indicate that severe maternal ZD in the rat results in structural and functional alterations in the GP of fetal bone, leading to a defective endochondral ossification.[Abstract] [Full Text] [Related] [New Search]