These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting a dominant negative rho kinase to neurons promotes axonal outgrowth and partial functional recovery after rat rubrospinal tract lesion. Author: Wu D, Yang P, Zhang X, Luo J, Haque ME, Yeh J, Richardson PM, Zhang Y, Bo X. Journal: Mol Ther; 2009 Dec; 17(12):2020-30. PubMed ID: 19623163. Abstract: Many axonal growth inhibitors that contribute to the usual failure of axon regeneration in the central nervous system (CNS) exert their effects via the RhoA-Rho kinase (ROCK) signal pathway. In this study, we investigated whether lentiviral vector (LV)-mediated neuron-specific expression of a dominant negative mutant of ROCK (DNROCK) could promote axon outgrowth in vitro and in vivo. Dissociated adult rat dorsal root ganglion (DRG) neurons were seeded on solubilized myelin proteins and transduced with either LV/DNROCK or LV/green fluorescent protein (GFP). DNROCK-expressing neurons were shown to have a greater chance of generating neurites and a longer mean length of neurite than GFP-expressing neurons. In the in vivo studies, lentiviruses were injected into the adult rat red nucleus followed by unilateral rubrospinal tract (RST) transection at the fourth cervical level. Rats in the DNROCK group showed better functional recovery in the affected hindlimbs and forelimbs than those in the GFP group. Examination of the spinal cord sections revealed more rubrospinal axonal profiles growing to the spinal cord caudal to the lesion in the DNROCK group than in the GFP group. These results indicate that blocking the RhoA-ROCK signal pathway by expressing DNROCK can enhance regenerative axonal sprouting and lead to partial recovery of limb function.[Abstract] [Full Text] [Related] [New Search]