These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sex differences in global mRNA content of human skeletal muscle. Author: Maher AC, Fu MH, Isfort RJ, Varbanov AR, Qu XA, Tarnopolsky MA. Journal: PLoS One; 2009 Jul 22; 4(7):e6335. PubMed ID: 19623254. Abstract: Women oxidize more fat as compared to men during endurance exercise and several groups have shown that the mRNA content of selected genes related to fat oxidation are higher in women (e.g. hormone sensitive lipase, beta-hydroxyacyl-CoA dehydrogenase, CD36). One of the possible mechanisms is that women tend to have a higher area percentage of type I skeletal muscle fibers as compared with men. Consequently, we hypothesized that sex would influence the basal mRNA and protein content for genes involved in metabolism and the determination of muscle fiber type. Muscle biopsies from the vastus lateralis were collected from healthy men and women. We examined mRNA content globally using Affymetrix GeneChips, and selected genes were examined and/or confirmed by RT-PCR. Furthermore, we examined protein content by Western blot analysis. Stringent gene array analysis revealed 66 differentially expressed genes representing metabolism, mitochondrial function, transport, protein biosynthesis, cell proliferation, signal transduction pathways, transcription and translation. Stringent gene array analysis and RT-PCR confirmed that mRNA for; acyl-coenzyme A acyltransferase 2 (ACAA2), trifunctional protein beta (HADHB), catalase, lipoprotein lipase (LPL), and uncoupling protein-2 (UCP-2) were higher in women. Targeted gene analysis revealed that myosin heavy chain I (MHCI), peroxisome proliferator-activated receptor (PPAR)delta were higher in women compared with men. Surprisingly, there were no significant sex based differences in protein content for HADHB, ACAA2, catalase, PPARdelta, and MHC1. In conclusion, the differences in the basal mRNA content in resting skeletal muscle suggest that men and women are transcriptionally "primed" for known physiological differences in metabolism however the mechanism behind sex differences in fiber type remains to be determined.[Abstract] [Full Text] [Related] [New Search]