These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondria modulate the spatio-temporal properties of intra- and intercellular Ca2+ signals in cochlear supporting cells.
    Author: Mann ZF, Duchen MR, Gale JE.
    Journal: Cell Calcium; 2009 Aug; 46(2):136-46. PubMed ID: 19631380.
    Abstract:
    In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+](cyt)), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+](cyt) signals that are triggered by ATP or by hair cell damage. ATP application (0.1-50 microM) caused a dose dependent increase in [Ca2+](cyt) which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+](cyt) transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+](cyt) signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.
    [Abstract] [Full Text] [Related] [New Search]