These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein functional class prediction using global encoding of amino acid sequence. Author: Li X, Liao B, Shu Y, Zeng Q, Luo J. Journal: J Theor Biol; 2009 Nov 21; 261(2):290-3. PubMed ID: 19631664. Abstract: A key goal of the post-genomic era is to determine protein functions. In this paper, we proposed a global encoding method of protein sequence (GE) to descript global information of amino acid sequence, and then assign protein functional class using machine learning methods nearest neighbor algorithm (NNA). We predicted the function of 1818 Saccharomyces cerevisiae proteins which was used in Vazquez's global optimization method (GOM) except eight proteins which cannot get from the database now or whose sequence length is too short. Using our approach, the computed accuracy is better than Vazquez's global optimization method (GOM) in some cases. The experiment results show that our new method is efficient to predict functional class of unknown proteins.[Abstract] [Full Text] [Related] [New Search]