These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spin-trapping of superoxide by 5,5-dimethyl-1-pyrroline N-oxide: application to isolated perfused organs.
    Author: Pou S, Rosen GM.
    Journal: Anal Biochem; 1990 Nov 01; 190(2):321-5. PubMed ID: 1963276.
    Abstract:
    Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 M-1 s-1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.
    [Abstract] [Full Text] [Related] [New Search]