These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium transport in the choroid plexus and salt-sensitive hypertension. Author: Amin MS, Reza E, Wang H, Leenen FH. Journal: Hypertension; 2009 Oct; 54(4):860-7. PubMed ID: 19635991. Abstract: To elucidate the role of epithelial sodium channels (ENaCs) and Na(+)-K(+)-ATPase in Na(+) transport by the choroid plexus, we studied ENaC expression and Na(+) transport in the choroid plexus. Lateral ventricle choroid plexuses were obtained from young male Wistar, Dahl salt-resistant (SS.BN13), and Dahl salt-sensitive (SS/MCW) rats on a regular (0.3%) or high- (8.0%) salt diet. The effects of ENaC blocker benzamil and Na(+)-K(+)-ATPase blocker ouabain on sodium transport were evaluated by measuring the amounts of retained (22)Na(+) and by evaluating intracellular [Na(+)] with Sodium Green fluorescence. In Wistar rats, ENaC distribution was as follows: microvilli, 10% to 30%; cytoplasm, 60% to 80%; and basolateral membrane, 5% to 10%. Benzamil (10(-8) m) decreased (22)Na(+) retention by 20% and ouabain (10(-3) m) increased retention by 40%, whereas ouabain and benzamil combined caused no change. Similar changes were noted in intracellular [Na(+)]. In Dahl rats on a regular salt diet, intracellular [Na(+)] was similar, but the amount of retained (22)Na(+) was less in sensitive versus resistant rats. High salt did not affect ENaC mRNA or protein, nor the benzamil induced decreases in retained (22)Na(+) or intracellular [Na(+)] in either strain. However, high salt increased intracellular [Na(+)] and attenuated the increase in uptake of (22)Na(+) by ouabain in resistant but not sensitive rats, suggesting a decrease in Na(+)-K(+)-ATPase activity only in resistant rats. These findings suggest that both ENaC and Na(+)-K(+)-ATPase regulate Na(+) transport in the choroid plexus. Aberrant regulation of Na(+) transport and of Na(+)-K(+)-ATPase activity, but not of ENaCs, might contribute to the increase in cerebrospinal fluid [Na(+)] in Dahl salt-sensitive rats on a high-salt diet.[Abstract] [Full Text] [Related] [New Search]