These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Author: Shang Y, Liu Y, Du L, Wang Y, Cheng X, Xiao W, Wang X, Jin H, Yang X, Liu S, Chen Q. Journal: Hepatology; 2009 Oct; 50(4):1204-16. PubMed ID: 19637283. Abstract: UNLABELLED: Normal hepatocytes do not express endogenous uncoupling protein 2 (UCP2) in adult liver, although Kupffer cells do, and it is strikingly induced in hepatocytes in steatotic liver and obese conditions. However, the direct link of UCP2 with the pathogenic development of liver diseases and liver injury remains elusive. Here we report that targeted expression of UCP2 to mouse liver increases susceptibility to acute liver injury induced by lipopolysaccharide (LPS) and galactosamine (GalN). UCP2 appears to enhance proton leak, leading to mild uncoupling in a guanosine diphosphate-repressible manner. Indeed, mitochondria from the genetically manipulated mouse liver have increased state 4 respiration, lower respiratory control ratio, and reduced adenosine triphosphate (ATP) levels, which altered mitochondrial physiology. To address the underlying mechanism of how UCP2 and the reduced energy coupling efficiency enhance cell death in mouse liver, we show that the reduced ATP levels lead to activation of 5'AMP-activated protein kinase (AMPK) and its downstream effector, c-Jun N-terminal kinase; thus, the increased sensitivity toward LPS/GalN-induces apoptosis. Importantly, we show that inhibition of UCP2 activity by its pharmacological inhibitor genipin prevents LPS/GalN-induced ATP reduction, AMPK activation, and apoptosis. Also, inhibition of ATP production by oligomycin promotes LPS/GalN-induced cell death both in vivo and in vitro. CONCLUSION: Our results clearly show that targeted expression of UCP2 in liver may result in compromised mitochondrial physiology that contributes to enhanced cell death and suggests a potential role of UCP2 in the development of liver diseases.[Abstract] [Full Text] [Related] [New Search]