These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide (103)Pd.
    Author: Hussain M, Sudar S, Aslam MN, Shah HA, Ahmad R, Malik AA, Qaim SM.
    Journal: Appl Radiat Isot; 2009 Oct; 67(10):1842-54. PubMed ID: 19640722.
    Abstract:
    (103)Pd is an important radionuclide having a half-life of 16.99d, which is suitable for internal radiation therapy, especially used for the treatment of prostate cancer. Its production in no-carrier-added form is done via charged-particle-induced reactions and the data are available in EXFOR library. We evaluated six charged-particle-induced reactions, namely (nat)Ag(p,x)(103)Pd, (103)Rh(p,n)(103)Pd, (103)Rh(d,2n)(103)Pd, (100)Ru(alpha,n)(103)Pd, (101)Ru(alpha,2n)(103)Pd, and (102)Ru((3)He,2n)(103)Pd process. In the first case, analysis was done up to about 100MeV but in other cases only up to about 25 or 40MeV. Furthermore, an evaluation of the data for the (nat)Ag(p,x)(103)Ag process was also done since it may serve as a typical example for the (103)Ag-->(103)Pd precursor system. A statistical procedure supported by nuclear model calculations using the codes STAPRE, EMPIRE 2.19, and TALYS was used to validate and fit the experimental data. The recommended sets of data derived together with confidence limits are reported. The application of those data, particularly in the calculation of integral yields, is discussed. A comparison of the investigated routes from the viewpoint of practical applicability to the production of (103)Pd is given. Presently the (103)Rh(p,n)(103)Pd reaction is the method of choice.
    [Abstract] [Full Text] [Related] [New Search]