These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spatial attention in area V4 is mediated by circuits in primary visual cortex. Author: Tiesinga PH, Buia CI. Journal: Neural Netw; 2009 Oct; 22(8):1039-54. PubMed ID: 19643574. Abstract: The ability to covertly select visual stimuli in our environment based on their behavioral relevance is an important skill. Stimulus selection has been studied experimentally, at the single neuron as well as at the population level, by recording from the visual cortex of subjects performing attention-demanding tasks, but studies at the local circuit level are lacking. We conducted simulations of a primary visual cortex (V1) model to provide insight into the local circuit computation underlying stimulus selection in V4. Two small oriented rectangular bars were placed at different locations in the 4 by 4 degree visual field represented by the V1 model, such that they activated different V1 neurons but such that they were both inside the classical receptive field (CRF) of the same V4 neuron. The biased competition framework [Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222] makes predictions for the response of V4 neurons and the modulation thereof by spatial and feature attention. In our simulation of the V1 network, we obtained results consistent with these predictions for V4 when the model had long-range excitatory projections targeting inhibitory neurons and when spatial attention was mediated by a spatially restricted projection that either inhibited the inhibitory neurons or excited the excitatory neurons. Although it is not clear whether attention effects measured in V4 neurons are generated mostly by local circuits within V4, our simulations suggest that spatial attention at a resolution less than the size of the CRF of a V4 neuron is inherited from upstream areas like V1 and relies on circuits mediating surround suppression at the single neuron level. Furthermore, the model displayed global oscillations in the alpha frequency range (around 10 Hz), whose coherence was highest in the absence of visual stimulation, which is consistent with electroencephalograms recorded in humans. By contrast, when a stimulus was presented the alpha oscillation sped up and became less coherent, whereas at the single column level (40-480 cells) transient beta/gamma oscillations were observed with a frequency between 25 and 50 Hz.[Abstract] [Full Text] [Related] [New Search]