These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, radiolabeling, in vitro and in vivo evaluation of [18F]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5.
    Author: Lucatelli C, Honer M, Salazar JF, Ross TL, Schubiger PA, Ametamey SM.
    Journal: Nucl Med Biol; 2009 Aug; 36(6):613-22. PubMed ID: 19647167.
    Abstract:
    INTRODUCTION: [18F]-(E)-3-((6-Fluoropyridin-2-yl)ethynyl)cyclohex-2-enone O-methyl oxime ([18F]-FPECMO) is a novel derivative of [11C]-ABP688. [18F]-FPECMO was characterized as a PET imaging agent for the metabotropic glutamate receptor subtype 5 (mGluR5). METHODS: [18F]-FPECMO was synthesized in a one-step reaction sequence by reacting [(18)F]-KF-K(222) complex with (E)-3-((6-bromopyridin-2-yl)ethynyl)cyclohex-2-enone O-methyl oxime in dry DMSO. The in vitro affinity of FPECMO was determined by displacement assays using rat whole brain homogenates (without cerebellum) and the mGluR5-specific radioligand [(3)H]-M-MPEP. Further in vitro characterization involved metabolite studies, lipophilicity determination and autoradiographical analyses of brain slices. In vivo evaluation was performed by postmortem biodistribution studies and PET experiments using Sprague-Dawley rats. RESULTS: The radiochemical yield after semipreparative HPLC was 35+/-7% and specific activity was >240 GBq/micromol. [(18)F]-FPECMO exhibited optimal lipophilicity (logD=2.1) and high metabolic stability in vitro. Displacement studies revealed a K(i) value of 3.6+/-0.7 nM for FPECMO. Biodistribution studies and ex vivo autoradiography showed highest radioactivity accumulation in mGluR5-rich brain regions such as the striatum and hippocampus. Co-injection of [18F]-FPECMO and ABP688 (1 mg/kg body weight), an mGluR5 antagonist, showed 40% specific binding in the striatum, hippocampus and cortex, regions known to contain high densities of the mGluR5. PET imaging, however, did not allow the visualization of mGluR5-rich brain regions in the rat brain due to a fast washout of [18F]-FPECMO from mGluR5-expressing tissues and rapid defluorination. CONCLUSIONS: [18F]-FPECMO showed significant potential for the detection of mGluR5 in vitro; however, its in vivo characteristics are not optimal for a clear-cut visualization of the mGluR5 in rats.
    [Abstract] [Full Text] [Related] [New Search]