These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased DNA damage and oxidative stress in chickens with natural Marek's disease. Author: Keles H, Fidan AF, Cigerci IH, Kucukkurt I, Karadas E, Dundar Y. Journal: Vet Immunol Immunopathol; 2010 Jan 15; 133(1):51-8. PubMed ID: 19647879. Abstract: Oxidative stress contributes to the accumulation of genomic abnormalities, prevents cellular apoptosis, and also mediates immunosuppression resulting in tumor formation. Marek's Disease provides excellent opportunities for the study of herpesvirus-induced tumors both in experimental- and natural conditions. The aim of this study was to examine the effects of Marek's Disease (MD) on basal levels of DNA strand breaks and on the oxidative-antioxidative status of chickens with MD. White-Lohmann hens-fifteen infected with Marek's Disease Virus (MDV) and fifteen healthy-of same age and sex were included in this study. MD infection was diagnosed via clinical signs, gross- and micro-pathological findings and also by detection of viral antigens in feather follicle epithelium by the indirect immunoperoxidase method. Compared with healthy controls, DNA damage was greater and levels of malondialdehyde (MDA) and plasma protein carbonyl (PCO), and plasma concentration of nitric oxide metabolites (NOx) higher in the MD group. Furthermore, total antioxidant activities (AOAs) were found lowered and glutathione (GSH) levels reduced in the MD group compared to the control group. Significantly positive correlation was found between DNA damage, MDA, PCO, and NOx in the MD group. DNA strand breaks were found negatively associated with AOA and GSH concentrations in the MD group. Our results demonstrated that oxidative stress markers and DNA damage substantially increased in chickens with MD, which indicated that increased DNA damage levels might be related to the increased oxidative stress and reduced antioxidant activity.[Abstract] [Full Text] [Related] [New Search]