These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines. Author: Kiyose K, Aizawa S, Sasaki E, Kojima H, Hanaoka K, Terai T, Urano Y, Nagano T. Journal: Chemistry; 2009 Sep 14; 15(36):9191-200. PubMed ID: 19650089. Abstract: In spite of the wide availability of various near-infrared (NIR) fluorophores as labeling reagents, there are few functional NIR fluorescent probes for which change in the absorption and/or fluorescence spectra upon specific reaction with biomolecules is seen. The widely used photoinduced electron-transfer mechanism is unsuitable for NIR fluorophores, such as tricarbocyanines, because their long excitation wavelength results in a small singlet excitation energy. We have reported the unique spectral properties of amine-substituted tricarbocyanines, which were utilized to develop two design strategies. One approach was based on control of the absorption wavelength by using the difference in electron-donating ability before and after a specific reaction with a biomolecule, and the other approach was based on control of the fluorescence intensity by modulating the Förster resonance energy-transfer efficiency through a change in the overlap integral that arises from the change in absorption under acidic conditions. These strategies were validated by obtaining tricarbocyanine-based ratiometric NIR fluorescent probes for esterase and for pH level.[Abstract] [Full Text] [Related] [New Search]