These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Author: Jiang F, Frey BR, Evans ML, Friel JC, Hopper JE.
    Journal: Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897.
    Abstract:
    Gal4 is a prototypical eukaryotic transcriptional activator whose recruitment function is inhibited in the absence of galactose by the Gal80 protein through masking of its transcriptional activation domain (AD). A long-standing nondissociation model posits that galactose-activated Gal3 interacts with Gal4-bound Gal80 at the promoter, yielding a tripartite Gal3-Gal80-Gal4 complex with altered Gal80-Gal4 conformation to enable Gal4 AD activity. Some recent data challenge this model, whereas other recent data support the model. To address this controversy, we imaged fluorescent-protein-tagged Gal80, Gal4, and Gal3 in live cells containing a novel GAL gene array. We find that Gal80 rapidly dissociates from Gal4 in response to galactose. Importantly, this dissociation is Gal3 dependent and concurrent with Gal4-activated GAL gene expression. When galactose-triggered dissociation is followed by galactose depletion, preexisting Gal80 reassociates with Gal4, indicating that sequestration of Gal80 by Gal3 contributes to the observed Gal80-Gal4 dissociation. Moreover, the ratio of nuclear Gal80 to cytoplasmic Gal80 decreases in response to Gal80-Gal3 interaction. Taken together, these and other results provide strong support for a GAL gene switch model wherein Gal80 rapidly dissociates from Gal4 through a mechanism that involves sequestration of Gal80 by galactose-activated Gal3.
    [Abstract] [Full Text] [Related] [New Search]