These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 6-Hydroxycleroda-3,13-dien-15,16-olide protects neuronal cells from lipopolysaccharide-induced neurotoxicity through the inhibition of microglia-mediated inflammation. Author: Shih YT, Hsu YY, Chang FR, Wu YC, Lo YC. Journal: Planta Med; 2010 Feb; 76(2):120-7. PubMed ID: 19653144. Abstract: Polyalthia longifolia var. pendula is used as an antipyretic agent in indigenous systems of medicine. Microglia-mediated inflammation plays an important role in the pathway leading to neuronal cell death in a number of neurodegenerative diseases. The aim of this study was to investigate the effects of 6-hydroxycleroda-3,13-dien-15,16-olide (PL3) extracted from Polyalthia longifolia var. pendula on lipopolysaccharide(LPS)-induced inflammation in microglia-like HAPI cells and primary microglia cultures. In microglia-neuron co-cultures, LPS decreased the cell viability of neuroblastoma SH-SY5Y cells. LPS-induced cell death was attenuated by the NOS inhibitor, L-NAME, the COX-2 inhibitor, NS-398 or the NADPH oxidase inhibitor, DPI, respectively. In LPS-treated microglia cells, PL3 decreased the expression of iNOS, COX-2, gp91 (phox), and NF- kappaBp65, the degradation of I kappaB alpha, and the production of NO, PGE (2), iROS, and TNF- alpha. PL3 also enhanced the expression of HO-1, a cytoprotective and anti-inflammatory enzyme. Moreover, PL3 reduced LPS-activated microglia-induced cell death. The present results suggest that PL3 inhibits microglia-mediated inflammation and inflammation-related neuronal cell death. Therefore, PL3 has potential use for the treatment of inflammation-related neurodegenerative diseases.[Abstract] [Full Text] [Related] [New Search]