These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis, and structure-activity relationships of benzophenone-based tetraamides as novel antibacterial agents.
    Author: Vooturi SK, Cheung CM, Rybak MJ, Firestine SM.
    Journal: J Med Chem; 2009 Aug 27; 52(16):5020-31. PubMed ID: 19653650.
    Abstract:
    The increase in the incidence of both hospital- and community-acquired antibiotic-resistant infections is a major concern to the healthcare community. There have been only two new classes of antibiotics approved by the FDA over the past 40 years, and clearly there is a growing need for additional antimicrobial agents. In this paper, we present our work on the discovery of a class of benzophenone containing compounds that possess good activity against MRSA, VISA, VRSA, and VRE and moderate activity against E. coli. These compounds display MIC values in the 0.5-2.0 mg/L range and are not cytotoxic against mammalian cells. Extensive structure-activity relationship studies revealed that the benzophenone was absolutely essential for antibacterial activity as was the presence of a cationic group. Although these agents display DNA binding activity, we observed that these compounds do not inhibit any macromolecular synthesis reliant upon DNA nor do they inhibit lipid or cell wall biosynthesis. Instead, we found that these agents cause membrane depolarization, indicating that the bacterial membrane was the primary site of action for these agents. Our studies suggest that caution should be taken in assigning the mechanism of action for DNA binding antibiotics.
    [Abstract] [Full Text] [Related] [New Search]