These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The folding pathway of onconase is directed by a conserved intermediate. Author: Schulenburg C, Löw C, Weininger U, Mrestani-Klaus C, Hofmann H, Balbach J, Ulbrich-Hofmann R, Arnold U. Journal: Biochemistry; 2009 Sep 08; 48(35):8449-57. PubMed ID: 19655705. Abstract: A promising approach to unravel the relationship between sequence information, tertiary structure, and folding mechanism of proteins is the analysis of the folding behavior of proteins with low sequence identity but comparable tertiary structures. Ribonuclease A (RNase A) and its homologues, forming the RNase A superfamily, provide an excellent model system for respective studies. RNase A has been used extensively as a model protein for folding studies. However, little is known about the folding of homologous RNases. Here, we analyze the folding pathway of onconase, a homologous protein from the Northern leopard frog with great potential as a tumor therapeutic, by high-resolution techniques. Although onconase and RNase A significantly differ in the primary structure (28% sequence identity) and in thermodynamic stability (DeltaDeltaG = 20 kJ mol(-1)), both enzymes possess very similar tertiary structures. The present folding studies on onconase by rapid mixing techniques in combination with fluorescence and NMR spectroscopy allow the structural assignment of the three kinetic phases observed in stopped-flow fluorescence spectroscopy. After a slow peptidyl-prolyl cis-to-trans isomerization reaction in the unfolded state, ONC folds via an on-pathway intermediate to the native state. By quenched-flow hydrogen/deuterium exchange experiments coupled with 2D NMR spectroscopy, 31 amino acid residues were identified to be involved in the structure formation of the intermediate. Twelve of these residues are identical in the RNase A sequence, which is a significantly higher percentage (39%) than the overall 28% sequence identity. Moreover, the structure of this intermediate closely resembles two of the intermediates that occur early during the refolding of RNase A. Obviously, in spite of considerable differences in their amino acid sequence the initial folding events of both proteins are comparable, guided by a limited number of conserved residues.[Abstract] [Full Text] [Related] [New Search]