These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Continuous distributions of ventilation and gas conductance to perfusion in the lungs.
    Author: Yamaguchi K, Kawai A, Mori M, Asano K, Takasugi T, Umeda A, Yokoyama T.
    Journal: Adv Exp Med Biol; 1990; 277():625-36. PubMed ID: 1965763.
    Abstract:
    Theoretical analysis and experimental observations were conducted to establish a method allowing to demonstrate the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within the erythrocyte together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, of varied solubility in blood and different diffusivity in lung tissue, were used as indicator gases. 15 patients with interstitial pneumonia of unknown etiology, placed in the supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and saline containing appropriate amount of the six inert gases was infused via an antecubital vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken through catheters inserted into the femoral and pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with the Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by VA/Q and G/Q ratios, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested using various artificial distributions of VA/Q and G/Q ratios, showing that it could characterize the distributions containing up to at least two modes on VA/Q-G/Q field with a substantial accuracy. Analytical results estimated from the patients with interstitial lung disease revealed the following features. (1) There appears to be bimodal distribution of Q along G/Q axis extending to relatively low G/Q less than 10(-3) ml(STPD)/(ml.Torr), which may limit O2 exchange between alveolar gas and capillary blood. This area of low G/Q receives 10% of total Q. (2) Severe diffusion limitation causing disequilibrium of the inert gas across the blood-gas barrier is solely observed in 2 out of 15 patients and an amount of Q associated with this phenomenon is very small (below 1%).(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]