These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atmospheric CO2 concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars.
    Author: Pérez-López U, Robredo A, Lacuesta M, Muñoz-Rueda A, Mena-Petite A.
    Journal: J Plant Physiol; 2010 Jan 01; 167(1):15-22. PubMed ID: 19660829.
    Abstract:
    Future environmental conditions will include elevated concentrations of salt in the soils and elevated concentrations of CO(2) in the atmosphere. Soil salinization inhibits crop growth due to osmotic and ionic stress. However, plants possess salt tolerance mechanisms, such as osmotic and elastic adjustment, to maintain water status. These mechanisms, which enhance the uptake and accumulation of ions and the synthesis of compatible solutes, require substantial energy expenditure. Under elevated CO(2), the carbon and energy supplies are usually higher, which could facilitate the energetically expensive salt tolerance mechanisms. To test this hypothesis, the factors involved in osmotic and elastic adjustments in two barley cultivars (Hordeum vulgare cv. Alpha and cv. Iranis) grown under several salt concentrations and at ambient or elevated [CO(2)] were evaluated. Under ambient [CO(2)] and salt stress, both cultivars (1) decreased the volumetric elasticity modulus (epsilon) of their cell walls, and (2) adjusted osmotically by accumulating ions (Na(+) and Cl(-)) from the soil, confirming barley as an includer species. The contributions of sugars and other unidentified osmolytes also increased, while the contribution of organic acids decreased. Under elevated [CO(2)] and salt stress, epsilon decreased less and osmotic adjustment (OA) was greater than at ambient [CO(2)]. In fact, the greater OA under elevated [CO(2)] was positively correlated with the contributions of sugars and other unidentified compounds. These results indicate that barley is likely to be successful in more salinized soils due to its capacity for OA under elevated [CO(2)].
    [Abstract] [Full Text] [Related] [New Search]