These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Author: Holzinger A, Roleda MY, Lütz C. Journal: Micron; 2009 Dec; 40(8):831-8. PubMed ID: 19660959. Abstract: The physiological performance and ultrastructural integrity of the vegetative freshwater green alga Zygnema sp., growing under ambient polar day solar radiation and after exposure to experimentally low radiation, but with high UVR:PAR ratio were investigated. In the laboratory, algae were exposed to low photosynthetic active radiation (PAR=P, 400-700 nm, 20 micromol m(-2) s(-1)), PAR + UV-A = PA (320-400 nm, 4.00 W m(-2) = UV-A) and PAR + UV-A + UV-B = PAB (280-320 nm, 0.42 W m(-2) = UV-B) for 24 h at 7 degrees C. Photosynthetic performance and ultrastructure of ambient solar radiation-exposed (field control) and experimentally treated Zygnema samples were assessed using chlorophyll fluorescence, and transmission electron microscopy (TEM). No significant treatment effect was observed in the photosynthesis-irradiance curve parameters. Exclusion of the UV-B spectrum in the laboratory treatment caused significantly lower effective photosynthetic quantum yield compared to samples exposed to the whole radiation spectrum. TEM revealed no obvious differences in the ultrastructure of field control and laboratory P-, PA- and PAB-exposed samples. Substantial amounts of lipid bodies, visualized by Sudan IV staining, were observed in all samples. Chloroplasts contained numerous plastoglobules. Organelles like mitochondria, Golgi bodies and the nucleus remained unaffected by the radiation exposures. Zygnema is well adapted to ambient solar radiation, enabling the alga to cope with experimental UV exposure and it is expected to persist in a scenario with enhanced UV radiation caused by stratospheric ozone depletion.[Abstract] [Full Text] [Related] [New Search]