These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B.
    Author: Meyer LM, Löfgren S, Ho YS, Lou M, Wegener A, Holz F, Söderberg P.
    Journal: Exp Eye Res; 2009 Dec; 89(6):833-9. PubMed ID: 19664619.
    Abstract:
    We investigated if the absence of glutaredoxin1, a critical protein thiol repair enzyme, increases lens susceptibility to oxidative stress caused by in vivo exposure to ultraviolet radiation type B (UVR-B). Glrx(-/-) mice and Glrx(+/+) mice were unilaterally exposed in vivo to UVR-B for 15 min. Groups of 12 animals each received 4.3, 8.7, and 14.5 kJ/m(2) respectively. 48 h post UVR-B exposure, the induced cataract was quantified as forward lens light scattering. Cataract morphology was documented with darkfield illumination photography. Glutathione (GSH/GSSG) content was analyzed in Glrx(-/-) and Glrx(+/+) lenses. UVR-B exposure induced anterior sub-capsular cataract (ASC) in Glrx(-/-) and Glrx(+/+) mice. In Glrx(-/-) lenses the opacities extended further towards the lens equator than in wild type animals (Glrx(+/+)). Lens light scattering in Glrx(-/-) mice was increased in all dose groups compared to lenses with normal glutaredoxin1 function. The difference was more pronounced with increasing exposure dose. Lens sensitivity for UVR-B induced damage was significantly higher in Glrx(-/-) lenses compared to Glrx(+/+) lenses. The Glrx gene provides a 44% increase of protection against close to threshold UVR-B induced oxidative stress compared to the absence of the Glrx gene. In conclusion, the absence of glutaredoxin1 increases lens susceptibility to UVR-B induced oxidative stress in the mouse.
    [Abstract] [Full Text] [Related] [New Search]